
Worksheet 10.1 / On patrol 1

Worksheet 10.1 / On patrol

Before starting with this worksheet, you should have successfully completed the Ceebot

environment “SB 8: Conditional loops“ / „Pathfinder“ exercise.

Ceebot environment
“SB 10: Arrays and files“ / “On patrol“

Mission
Our headquarter inside the crater of an extinct volcano

needs to be protected by a robot on guard. The robot

perpetually has to patrol along a route right on the crater’s

rim, indicated by a series of 25 waypoints (category

waypoint). At the end of each round, the robot needs to

reload its battery at the power station (category PowerStation).

Concept
In Ceebot environment ”SB 8: Conditional loops“ / „Pathfinder“, we have already programmed the

robot to follow a path given by a sequence of waypoints. In our present mission, the task to

repeatedly follow this path is slightly more complicated as the waypoints vanish as soon as the

robot drives onto them. Thus, after completion of the first round the waypoints are no longer

available.

So, the robot has to determine the waypoints’ positions during its first round and memorize it for

the subsequent rounds.

We already know that all kind of information is stored in

• variables of an adequate type or

• __________________ of an adequate class (see Worksheet 6.2)

In order to store the positions of all waypoints, we could use 25 different instances of the class

_____________ and could name them pos1, pos2, ... pos25. As all of these 25 instances

would have to be treated in the same way – during the first round, the position of a waypoint has to

be stored, and during the subsequent rounds, the robot has to drive to the stored positions – we

would have to write basically the same commands 25 times. As this method would be is very

cumbersome, it is much better to store the positions in an array.

An array contains several variables of the same type (or several instances of the same class) and

subsumes them under a common identifier.

Just as every variable and every instance of a class, an array has to be declared before it can be

used in the program:

Type_of_variable Name_of_array[Size_of_array] or

Name_of_class Name_of_array[Size_of_array]

In our example, we want to store the positions of the 25 waypoints in an array named pos, which is

declared by

point pos[25];

The position of the first waypoint is stored in pos[0], the position of the second waypoint is stored

in pos[1] and so on. The position of the 25th waypoint is stored in pos[_______].

The individual elements of an array are consecutively numbered, beginning with the number 0.

This number is set between brackets and is called the index of the array.

2 Worksheet 10.1 / On patrol

Beginners in Java und C++ (and thus also in Ceebot) are often confused by the fact that the

consecutive numbering of an array’s elements starts 0 instead of 1. This often causes bugs in pro-

grams. For example, the last element of an array x with 20 elements is not x[20] but x[____].

Arrays offer the possibility to process all elements of the array in the same way by using a loop

(usually a for-loop) to succesively increase the index of the array. As an example, the loop

for (int i=0;i<=99;i=i+1) a[i]=a[i]*3.14159;

results in a multiplication of all 100 numbers stored in array a by π.

Use an array in a program if several variables of the same type (or several instances of the same

class) have to be processed in the same way. Use a loop to process the elements of the array.

Solution

Listing 10.1.1 – On patrol

Code Description

extern void object::Patrol() {

 _____________ pos[_____]; Declaration of the array pos

 int counter=0; ________________________________

 object item=radar(_____________); Locate the first WayPoint.

 while(item!=______________) { Repeat as long as a WayPoint exists:

 pos[counter]=________________; Store the position of the WayPoint.

 goto(item.position); ________________________________

 counter=______________________; Increase counter by 1.

 item=__________________________; Locate the next WayPoint

 }

 item=_____________________________; Locate the PowerStation.

 ________________________________; Move to the power station.

 wait(7); Wait for battery to recharge.

 for(int i=0;i<=_______;i=______) { Second round: Successively drive to...

 goto(pos[i]); ... all stored positions.

 }

 item=radar(___________________); ____________________________________

 goto(_____________________);

 __________________________; Wait for battery to recharge.

}

Worksheet 10.1 / On patrol 3

Explain why we need the variable counter:

__

__

Improving the program
1. We have programmed the robot to finish two rounds, but actually it should repeat its patrol over

and over again. If we want a certain procedure to be repeated over and over again, we need an

__________________________ loop. Insert this loop properly.

2. At the end of each round, the robot waits longer than necessary for the battery to be

recharged. Instead of the command wait(7), use a loop to wait just as long as necessary to

recharge the battery (which means to wait until this._______________._______________ == 1,

see Worksheet 7.1).

3. We even can improve the program in another respect: It is not exactly smart to store the

positions of the 25 waypoints in the array pos, whereas the position of the PowerStation is

not stored at all. Add one more element to the array which stores this position at the end of the

first round. As a consequence, the loop for the consecutive rounds then needs to be executed

26 times.

Ceebot environment
”SB 10: Arrays and files“ / „Maze“

Mission
In the middle of a lake, we have found a mine for

titanium ore and use the derrick in the background

(categorie Derrick) to exploit it. The robot needs to

pick up a piece of titanium ore (category

TitaniumOre) produced by the derrick and to

transport it to the red cross at the stockyard.

(category TitaniumSpot).

Solution

As in Ceebot exercise ”SB 10: Arrays and

files“ / ”On patrol“, the robot drives to the

derrick if he moves from one WayPoint to the

next by use of the goto command. The

waypoints’ positions have to be stored

(because the waypoints vanish). When driving

back from the derrick, the robot needs to

move from one stored position to next, but in

reverse order. The program should work with

every number of waypoints.

The Nassi-Shneiderman diagram to the left

represents a first raw outline for the solution –

the first step of a Top-down design process.

Refine the diagram using the same phrases

as in Listing 10.1.1. The following hints might

be helpful.

Maze

As long as a waypoint exists

Locate the waypoint and move to its position

Store the waypoint's position

Locate the derrick and move to its position

Grab the TitaniumOre

Count the index of the stored positions

in reverse order

Move to the position with the respective index

Locate the power station and move there

Wait until the robot's battery is recharged

Locate the TitaniumSpot and move to its position

Drop the TitaniumOre

4 Worksheet 10.1 / On patrol

Hints
• As we want the program to work with an arbitrary number of waypoints, we must not pose a limit

to the size of the array pos. Just as Java, Ceebot offers an easy possibility to declare an array

without predefining its actual size – in the declaration, we just omit the value for the array’s size:

point pos[];

In Listing 10.1.1, the variable _________________ is increased by one each time when the robot

passes a WayPoint. At the beginning, this variable is set to ______, and thus, at the end of the

first round, the variable stores the total number of all waypoints.

• In order to drive from the derrick back to the stockyard, we need to count the index of array pos

in reverse order. This is best done by the loop

for (int i=anzahl-1;i<=0;i= ___________)

The position of the last WayPoint is stored in pos[anzahl-1] because the position of the first

waypoint is assigned to pos[0] (and not pos[1]).

• The Nassi-Shneiderman diagram shown above contains several almost identical steps ”Localize

an object and move to its position“. For this procedure, create a function with a single

parameter, namely an integer value describing the category of the object to be localized:

void goto_next (int cat)

{ … }

Further exercises
1. Extend the program in Ceebot environment ”SB 10: Arrays and files“ / ”Maze“ in such a way that

three pieces of titanium ore are transported to the stockyard.

2. Write a program which first stores 10 random numbers in an array and afterwards uses printf

to print these numbers on the screen.

3. Extension of exercise 2: Additionally print the sum of these 10 random numbers on the screen.

4. In Ceebot environment „SB 10: Arrays and files“ / “Cramped confines“, you can see three empty

batteries behind a small building. They have to be recharged at the PowerStation and

brought to the stockyard. However, the weeds around the station have proliferated and give the

robot a hard time finding its path. The waypoints lead the robot first to the batteries, afterwards

to the PowerStation and finally back to the stockyard. The robot has to drive this path three

times.

Hints:

• Due to the narrow gaps between buildings and plants, the goto command does not work

sufficiently. Instead, the robot needs to drive from one waypoint to the next using the

commands

turn(direction(...));

move(distance(...,...));

After each movement, the robot has to check out the following two situations:

• If the robot finds a battery in a distance of less than 5 meters, it needs to grab the battery.

• If the robot is at the PowerStation, it needs to wait for 7 seconds until the empty battery is

recharged.

