Worksheet 3.1 / Drawing a Dashed Square

Ceebot Environment:

"Chapter 3: Nested Loops" - „Drawing Board"

Mission:

We want the robot to draw a dashed square with a side length of 10 meters. The dashed sides consist of five solid lines of one meter length each, with one meter gaps in between.

Concept:

The robot draws one side by repeating
the following steps _ times:

- lowering the pen to the ground,
- moving 1 meter forward,
- lifting the pen from the ground,
- and again moving 1 meter forward.

So, the robot draws the dashed square by drawing \qquad times a side, whereby a side is drawn by
\qquad times drawing a line of one meter length.

Listing 3.1.1 - Drawing a dashed square	
Program code	Description
extern void object::DrawSquare() \{ repeat(\qquad _) \{ repeat(\qquad) \{ pendown(); \qquad \qquad move (\qquad); \} turn (\qquad); \}	Outer loop: Draw \qquad times a side of the square Inner loop: Draw a line of one meter length \qquad times Move \qquad meters forward Lift pen from ground End of inner loop End of outer loop
\}	

When a loop is used inside another loop, we talk about nested loops.

Worksh_03_1_Dashed_Square_v3_1
Fill in the phrases „not at all", ,,most often", „less often":

- The command lines inside the inner loop are repeated \qquad .
- Command lines inside the outer loop, but outside the inner loop, are repeated
- Command lines outside the outer loop are repeated \qquad .

Some questions regarding Listing 3.1.1:

- How many times is the pen lowered to the ground when the program is executed? \qquad times
- How many times does the program execute a move-command? \qquad times
- Which of the following Nassi-Shneiderman-Diagrams describes the program? What geometric shapes are drawn when the other three Nassi-Shneiderman-Diagrams programmed are used? Sketch the respective shape next to each of the Nassi-Shneiderman-Diagrams and verify your assumptions by programming the robot accordingly.

Repeat 4 times
Lower the pen Repeat 5 times Move 1 m forward Lift the pen
Move 1 m forward
Turn by -90 degrees

Repeat 4 times
Repeat 5 times
Lower the pen
Move 1m forward
Lift the pen
Move 1m forward
Turn by 90 degrees

Repeat 5 times
Repeat 5 times Lift the pen Move 1 m forward Lower the pen Move 1 m forward Turn by -90 degrees

Repeat 4 times
Repeat 5 times Repeat 2 times Lower the pen$\|$Move 1 m forward Lift the pen Turn by 90 degrees

- What happens when the turn-command in Listing 3.1.1 is placed inside the inner loop by moving it one program line up?

Further exercises:

Draw the following geometric shapes by using nested loops:

